
COMMUNICATION AND CONTROL
IN AN INTEGRATED MANUFACTURING SYSTEMi

Kang G. Shin, Roberx D. Throne, and Yogesh K. Muthuswamy

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, Michigan 48109-2122

Abstract

Typically, components in a manufacturing system are all cen-
trally controlled. Due to possible communication bottleneck-
ing, unreliabfiity, and inflexibility caused by using a central-
ized controller, a new concept of system integration called an
Integrated Multi-Robot System (IMRS) was developed. The
IMRS can be viewed as a distributed real-time system.

This paper presents some of the current research issues
being examined to extend the framework of the IMRS to
meet its performance goals. These issues include the use of
communication coprocessors to enhance performance, the dis-
tribution of tasks and the methods of providing fault-tolerance
in the IMRS. An application example of real-time collision
detection (as it relates to the IMRS concept) is also presented
and discussed.

1 Introduction
Conventionally, components in a manufacturing system are
all centrally controlled; that is, control tasks for the systr-
niay be distributed over a network of processors or res.’ !e
in a uniprocessor but are all executed under directives of
one central task. The work by Maimon [l] [2] is primarily
concerned with dynamically determining how to utilize the
resources within a workcell to achieve a certain objective,
where an activity controller provides for centralized control
of the workcell. The work at the National Bureau of Stan-
dards on their Automated Manufacturing Research Facility
(AMRF) system [3] [4] [5] deals with real-time control of a
workcell using strictly hierarchical control. Their system is
data-driven and based on state tables at each level of hier-
archy. At each level, these state tables are updated on the
basis of (1) commands from the next higher level, (2) results
of processes at the next lower level, and (3) sensor inputs at
the current level. While information can be exchanged across
one level, control is strictly vertical. The state table approach

?his work was supported in p a by the NASA Johnson Space Cen-
rer under Grant No. NCC-9-16 and the US Airforce Office of Scientific
Research under Contract No. F33615-85-C-5105.

other

a

a

a

a

allows for recovery from various undesirable events (so long
a$ these events are accounted for in one of the states), but the
overall sequence of operations is hidden from the user.

Due to possible communication bottlenecking, unreliabil-
ity, and inflexibility caused by using a central controller, we
have proposed a new concept of system integration, called
an Integrated Multi-Robot System (IMRS) [6] [7]. An IMRS
is defined as a collection of robots, sensors, computers, and

computer controlled machinery, such that

each robot is controlled by its own set of dedicated
tasks, which communicate to allow synchronization and
concurrency between robot processes,

tasks execute in parallel,

both centralized and decentralized control concepts are
used, and

tasks may be used for controlling other machinery, sen-
sor r/O processing, communication handing, or just
plain computations.

In the above definition (and UI what follows) the term ”pro-
~ e s s ” refers to an industrial (but not computational) process,
which could be decomposed into several subprocesses. Each
subprocess may be accomplished by executing a software
module in a computerized controller. Each module can be
decomposed further into computational tusks.

The goal of an IMRS is to outperform irs counterparts
by better utilization of physical space and computer capa-
bilities, increased throughput, greater flexibility, improved
fault-tolerance, and the capability of handling diverse man-
ufacturing processes. In order for an IMRS to effectively
utilize the available resources, it must make maximum use of
the possible parallelism between processes and tasks. In an
IMRS there are five different classes of interaction between
subprocesses[7]:

a Independent Processes: the work of each subprocess is
independent, and the actions taken by each subprocess

to accomplish its goal are also independent. Indirect
influence through state variables is the only way the
subprocesses of an independent process may be related.

Loosely Coupled Processes: the subprocesses perform
independent work, but the actions taken by each sub-
process depend on the actions of the other subprocesses,
e.g., two robots sharing the same workspace or set of
tools.

Tightly Coupled Processes: the work of the subpro-
cesses depend on each other, and the actions taken to
carry out subprocesses also depend on each other. Car-
rying a long steel beam with two robot arms is a typical
example of this class.

0 Serialized Motion Processes: the works of the subpro-
cesses depend on each other, yet the actions taken to
accomplish each subprocess are independent, e.g., as-
sembly.

0 Work Coupled Processes: the processes monitor each
other. Should one process crash due to a computer or
device failure, the other computer or device will attempt
to take over the responsibilities of the failing device or
computer.

Using the above classification, a logical communication
architecture called module architecture and those primitives
necessary for an IMRS are identified in [7]. The module ar-
chitecture for an IMRS is an n-ary tree that is formed by task
creation. When a task is created, it becomes a child task of
the task that created it. This parent/child relationship always
exists, but the amount of communication between the two
will be different according to the class of process the tasks
are controlling. Under most circumstances, communication
channels among child tasks will be directly established, with
the parent task playing a minor role. This is defmed as hor-
izontal communications. However, in some cases the parent
must tightly control its child tasks. This is defined as vertical
communications. Note that these two approaches represent
decentralized and centralized controls, respectively. A propri-
etor or administrator task is used to provide exclusive access
to shared resources (e.g., the right to change a state variable)
and resolve conflicts among different concurrent tasks.

We assume that processors controlling devices in one
workcell communicate over a common bus or a local area
network', while GM's Manufacturing Automation Protocol
(MAP) [8] is used for communication between workcells.
MAP is a protocol for local area networks based on the OS1
(Open Systems Interconnection) Reference Model developed
by IS0 and CCITT. It is a seven layer communication pro-
tocol which uses a token passing bus based on the IEEE
802.4 standard [9] [101 as the physical layer. The application
layer of MAP specifies the use of the Manufacturing Mes-
sage Specification (MMS) [1 I] [121 for communication with

manufacturing and process control devices. For time criti-
cal applications, the upper four layers of the seven layer IS0
protocol are removed, leaving a three layer protocol called
the MiniMAP. Thus, MiniMAP does not conform to the OS1
standard since it is incapable of peer open system communi-
cation. MiniMAP is suitable for unintelligent devices such as
sensors that do not need to communicate outside their inter-
connection network. MAPmA is composed of both the full
seven layer MAP and the three layer MiniMAP.

In the context of the IMRS concept, we discuss in sub-
sequent sections various issues in system integration, such as
architectures for high performance intertask communications,
the distribution of device controllers among the networked
computers, and graceful degradation in case computers and
devices fail. Communication bottlenecks should be avoided
with any distributed system, particularly with a real-time sys-
tem. In addition, the assignment and scheduling of tasks on
a processor in such a system is of paramount importance. In
order to minimize communication bottlenecks and allow for
real-time task management, the use of a communication co-
processor is discussed in Section 2. The distribution of tasks
on a distributed system has been studied previously. Section 3
discusses some of the issues involved in task distribution in
a real-time contxol environment like an IMRS. Section 4 dis-
cusses fault-tolerance in the IMRS, particularly the problems
with work coupled processes. Section 5 discusses an appli-
cation of the IMRS concept to real-time collision detection
and avoidance. Finally, Section 6 summarizes the paper.

2 IMRS Communications
An IMRS can be considered a distributed real-time system,
with each of the workcells considered as a node. A workcell
refers to a set of processes which are grouped together either
dke to their functianal relationship or due to physical p roxh-
ity of the devices they use. Communications within the same
workcell are usually more intense and time-constrained than
thE communications taking place between different workcells.

We will consider the use of a port-based communication
architecture for the IMRS because of its many advantages
such as modularity, flexibility, and programmability (see [7]
for more on these). In this architecture, each task is associated
with some ports to communicate with other tasks. These ports
are logical entities and may be mapped onto physical ports on
processor nodes on which their associated tasks are located.
It is natural to decompose each node's function of the IMRS
into communications and applications. For the high perfor-
mance required for the IMRS, the former will be handled by
a dedicated processor called a communication processor (CP)
and the latter by an application processor (AP). The idea of
using hardware support for interprocess communication has
been proposed elsewhere [13], though not in the context of
real-time control. The AP may either be one physical proces-
sor or multiple processors. The CP is responsible for all the

'That is, a network consisting of only the processors and devices
within one wodccell.

406

communications associated with the tasks residing at the node
and the AP is responsible for the necessary computation, e.g.,
execution of a robot’s motion.

The processes within a workcell are accomplished by ex-
ecuting a set of tasks, possibly on different processors. A
contemporary workcell consists of a number of coprocessors
which execute different tasks and also has a CP which is
responsible for communicating with the other workcells.

The inter-node access protocol will play a key role in the
overall system performance. Notable among popular perfor-
mance parameters are: response time, rhroughpur, uvuilubil-
ify. andfuirness. Response time is composed of nodal com-
putation time at each layer, queueing delays at each layer
and at each node, and the actual propagation time along the
network. For example, with the IEEE 802.4 token passing
scheme (used by GM’s MAP), an upper bound exists for the
time a node will have to wait to transmit some of its data. The
throughput of the network basickly depends on the buffering
capacity of the destination node or of any intermediate nodes

(i.e., gateways) the messages must pass through. Effective
throughput is a function of the number of retransmissions
required due to transmission errors. The availability of the
network depends on the reliability of the components used in
the network. For example, if the node with the token fails, the
network will be unavailable until error recovery procedures
reconfigure the system and generate a new token. Finally,
the fairness of the,network depends on the load demanded by
each user and the optimization the network provider is trying
to achieve. For example, if the network provider optimized
mean response time in the network, then it is better to allow
transmission of users’ packets equally. On the other hand, if
the network provider optimized throughput, then it is better
to allow transmission of packets from users who have the

by MH, and an appropriate algorithm to select a request to
service will be an important research area.

In addition to acting as the interface for the tasks at a
node, the MH is also responsible for maintaining the required
degree of fault-tolerance. Failures might be due to device or
processor failures. The MH maintains a task map at the node.
It is also responsible for unblocking processes that have been
blocked by the failure(s) of devices or processors.

The interconnection between the various processors at a
workcell depends very much on the pattern and intensity of
the communications taking place and also on the stringency
of the deadlines associated with the various tasks. A possi-
ble interconnection is to connect al l the processors in a ring.
In this case the time for message passing between any two
processors will not be the same, but this allows for expand-
ability. The entire workcell can be visualized as a hierarchy
of levels. At the lowest level we have the tasks and the
message handlers associated with them. At the next level is
the CP associated with that workcell node. The interconnec-
tion between the various levels and also the interconnections
within the same level have to be determined. Another issue is
whether to implement the MH in hardware or software, i.e.,
whether additional processing power should be provided to
each task to implement the MH, or can it be done by the CP
at the higher level. This would depend on the fault-tolerance
sought for the system as well as the message traffic pattern
and intensity.

The protocols used at various levels must be studied. A
traditional seven layer protocol at the device controller level
may result in deadlines being missed due to the time over-
head involved. The sensitivity ‘of the deadlines to various
parameters like protocols and interconnection is an important
issue and will determine the overall architecture.

3 Distributing IMRS Tasks Among Pro- maximum demand. For more information, see [14].
Unlike the inter-node communications, the organization

and communications within a workcell node are determined
by a number of other issues related to the message handler
(MH). The MH is a task responsible for interfacing each task
on the workcell with its environment. Each task is associated
with a MH task, and the aggregation of all the MH tasks
at a node resides in the CP and acts as the communication
interface for all the tasks associated with that node. This ag-
gregation will henceforth be referred to as MH for simplicity.

The tasks queue up their requests to the CP (either to send
or receive messages) on independent queues. The MH task
scuns all these queues and selects a request to service based on
some criteria, for example, priority of the requesting task, or
the deadline associated with the message to be sent. The task
priorities may either be determined a priori or dynamically.
After sending a message, some tasks might get blocked. Also,
when a message arrives from some other node, some tasks
might get unblocked. When a task currently executing on
the AP gets blocked after sending a message, the MH should
decide the next task to be scheduled on the AP. Similarly,
when a task gets unblocked. scheduling decisions have to be
made by the MH. The methodology of scanning the requests

cessors
The distribution of the tasks on the processors will be a key
element in determining the overall system cost, performance,
and reliability. By examining the parallelism between tasks
we get some indication of which tasks can be assigned to the
same processor without performance degradation. In addition
to the classification of processes, one of the distinct features
of an IMRS is to allow both vertical and horizontal com-
munications. If the control tasks are distributed over many
processors, a hybrid of horizontal and vertical communica-
tions between tasks may prove to be beneficial.

For example, serialized tasks can be assigned to the same
processor, while assigning independent tasks to the same pro-
cessor may result in a serious performance degradation. How-
ever, since some tasks may depend on state variables mod-
ified in another processor, delays in reliably updating these
variables must also be included when assigning tasks to pro-
cessors. If the network throughput is too low, assigning all
tasks dependent on one or two key state variables to a sin-
gle processor (even if the tasks are independent or loosely

407

coupled) will improve system performance. From these ar-
guments it appears beneficial to group many tasks on a few
large (and powerful) processors, but this could lead to a de-
crease in system performance and reliability.

The system throughput might increase if processors were
physically located near the devices to be controlled, each pro-
cessor having a direct access to the device (i.e., through an
UO port). In this way, a control task for a device could be
assigned to its “local processor” and would have to contend
with smaller delays over the physical network. There are,
however, several drawbacks to this idea. If we depend on
having a processor at each device, the potential reliability
of networking the computers is seriously diminished. If our
real-time performance depends on the presence of such pro-
cessors, and a local processor fails, we may not be able to
have another processor assume the control task and meet the
real-time constraints. In addition, if the device only com-
municates through the local processor’s UO ports, and the
processor fails. we may not be able to communicate with a
(working) device.

out a central controller (i) reduces the chances of a bottleneck
by exchanging messages among children (instead of always
going through the parent), (ii) increases reliability because
the subprocesses do not rely on one central control task, and
(iii) allows more parallelism because each child task is not
blocked as often as in the vertical case, where each child
must always wait for a directive from the parent. Tradeoffs
in using vertical and horizontal communications for various
industrial processes must be analyzed.

Most methods for allocation of tasks in a distributed sys-
tem are concerned with minimizing a cost function consist-
ing of the sum of processing cost per task on each assigned
processor and interprocessor communications (PC). As was
reviewed in [15], these methods are based on graph theory or
integer programming or heuristic solutions. Real-time con-
straints are difficult to impose using the graph theoretic ap-
proach, while the integer programming methods allow con-
straints that all of the tasks assigned to a processor complete
within a given time. However, this constraint does not ac-
count for task queueing and precedence relations among tasks.

Efe [16] presents a module clustering algorithm mini-
mizing IPC cost without considering constraints, and then
moves modules from overloaded to underloaded processors
by a module reassignment algorithm. Ma er. 01. [17] de-
veloped an algorithm based on integer programming and the
branch-and-bound method. A task exclusive matrix defined
mutually exclusive tasks that could not be placed on a single
processor and rusk redundancy was introduced for system re-
liability. Chu and Lan [18] chose to minimize the maximum
processor workload in the allocation of tasks in a distributed
real-time system. Workload was defined as the S u m Of
and accumulated execution time for each processor. A wait-
dm-ran’o bemeen assignments was defined in terms of

Allowing tasks to communicate directly (horizontally) with-

the task queueing delays. Precedence relations were used to
arrive at two heuristic rules for task assignment, which were
used in conjunction with the wait-time-ratios to generate a
heuristic algorithm for task allocation. Lo [19] proposed the
concept of interference cosrs which were inferred when two
tasks were assigned to the same processor. This additional
cost was used in an effort to reward concurrency.’

A criterion to measure task assignments in the IMRS us-
ing some of the ideas mentioned above must be developed.
It should include task redundancy and mutual exclusion to
provide reliability, as well as requirements to group certain
tasks to be executed on a single processor. An IMRS should
take advantage of as much parallelism as possible, so we will
need to include some type of interference penalty. Since we
have to deal with a real-time system, we will need to account
for queueing delays in the network and within a processor.
Finally, the IMRS deals with five basic task classes, and the
cost function will have to deal with tasks within the different
classes separately.

Once an appropriate cost function is determined, an algo-
rithm to distribute the tasks to the processors must be devel-
oped. It is unlikely that a polynomial time algorithm will be
found, so faster heuristic suboptimal algorithms may have to
be developed.

4 Fault-Tolerance
One of the primary reasons for using a distributed system is
to improve the fault-tolerance of the system. The IMRS deals
with fault-tolerance through work coupled processes or tasks.
These tasks monitor each other so that if the processor or
device executing one task fails, the other task on the healthy
processor can attempt to compensate. In order to compen-
sate for tasks on a failed processor, the states of those tasks
must be known. The update rate between work coupled tasks
will affect both network traffic and the load of the associated
message handlers. If the state of each work coupled task
is updated too often, the network may get congested with
state update messages, while if the state is not updated often
enough, then recovery of the failed process will be more dif-
ficult. Finally, work coupled tasks should not be assigned to
the same processor, since failure of that processor will make
recovery impossible.

For work coupled tasks to be effective, the system must
have the ability to determine that a processor or device has
failed. Hence we must first determine methods of detecting
the failure of a processor? One such method is sending heart-
bear messages between processors and assuming the failure of
a processor if a response is not received within a prescribed
time. A critical issue is the number of such messages and
the rate at which they are sent. Depending on the system
architecture and timing constraints, it may prove beneficial
to have such heartbeat messages sent at different rates for

~

’1ha1 is. the assignment of two tasks which could be run simultane-
ously if assigned to different processors would tend to produce a lower
objective function if such an assignment were made.

’We assume a foil sop system. where a processor stops when it fails.

408

d i & r c n t ~ T b e s e r a t c s W O U l d b e d c r c r r m n e d by(1)
the minimom allowable nxovcry time of any of the tasks 011
the failedplwesor, (2) the minimum state update late of any
of tht tasks oathe Eailedprocssor. and (3) the assignment
0 f t a s k s t o p " S Inadditioqthedestiaationofeach
kutbeat message wil l depend on these factors, since heart-
bcatmssagtscooldalsoserve as stateupdate messages.

Itmaybeusehltohavespecifichealthmanagenunttasks

c e s s o l s a c t i n g w y. For example, the health man-
ageanent tasks would be rspoasiMe for initiating all heartbeat
messages, mahtahhg tables of healthy processors and the

ery wbm apnmssor fded. While we may be able to save
time and xxmwces by having a single health management
task, thest benelia would have to be rcalizcd at the expense
of a camabed systun. We would certainly want to have
rrrtllnlimt copies of the health management tasks, and may
wmt to have two or more copies of dK same task running

Omx apocssoris &teimined to have failed, we must
devise rnechmkms for ensuring that wne of the tasks on the
wox&ing procswm mains %locked" while waiting for a
reply from atask on the failedprocessor. To accomplkh this
'we can have the message handler maintain lists of incoming
and outgoing messages and issue "fake" messages [20] to the
bLockbdtasks Inadditiw,sincctheIMRscommunicates
thmagh ports, tbe lists of users of a port must be updated to
d c c t t h e curma state of the system. If atask realizes that
one of the work coupled tasks it is monitoring has failed, it
should assume that task. Should it then also try to set up a
ocw work coupled task to monitor itself on another proces-
sor? One solution might be to have many ''ovedappjng" work

ever, the extra network aaffic caused by this solution could
be high. Iastead, we could have a hierarchical system of work

lcvtls of the hiemchy. Such a system for establishing check-
poims in order to achiewe resiliency was proposedin Pl]. In
addition, we would have to detemmc how many overlap

fault-tolerance. S i a d y , suppose a processor fails and all
of the tasks executing on it are assumed by other pmcessors.
Now the 6rst processor is restarted. We need to determim
a mechawm to dynamically reassigntasks to the processor
whem it is rcstartcd cutainly, we do not want to have to
shut down thenetwork (andhence thernanufac&ng)just to
doad one pmsssor. Tbe requirements for such a system
am pnsented in P I . In case drtre is a d c i e n t number of
failures that not all of the tasks cau be ZUIL in d - b e . these
tasksmustbeexeclltcd in aprcplanneddegmckdmd.

to mair+ainsystcm heal& ~tfianhavingindividualpro-

tasks mming on those processors. and coordinating recov-

S i m u l w y on d i f € m plncesors.

coupled tasks assigned when the system is initialized. HOW-

cooplcd tasks, in which states are llpaatea less often at lower

ping WOrL coupled tasks wodd pvide the desired degree of

5 Real-Time Collision Detection in an
IMRS

To discuss their feasibility. the IMRS co~lcepts and solutims
must be applied to some realistic examples. Due to its im-
portance, real-time obstacle detection and avoidance has been
selected as an application example.' This example requires
the IMRS to commmicate effectively with external sensors,
such as vision systems, acoustic range sensors, and various
types of proximity sensors. To maintain a high degree of
fault-tolemace, each of these sensors should be linked to the
computer network. We expect the sensors to provide overlap
ping coverage. so that if some of the sensors fail information
from the other sensors can be used to continue.

Initially. we wiU assume that the "obstacles" are AGVs
conveying pans between workcells. We do not want al l de-
vices on the factory floor to stop whenever an AGV nears a
device or workcell, only those workcells and devices which
potentially could collide with the AGV should be stopped or
slowed. Define a workcell safety volume as the volume en-
dosing the workcell which cannot be safely entend while the
devices in the workcell continue normal operation. Note that
it may be possible to safely enter a workcell safety volume
if the devices within a workcell are slowed down or theii
operations are changed. A device safety volume is similarly
dehed as the volume SurrOundlIl . g a device which cannot be
safely entered while the device remains in normal operation.

Associated with the notion of thesc safety volumes, as-
sume that there arc two levels of collision detection, work-
cell volume warning and device volume warning. The former
pvides warning that with an obstaclt's current trajecto+
it may intersea a particular workcell's safety volume, or a
p u p of workcells' safety volumes. This is early warning
that the devices in die workcell may have to stop or other-
wise alter their normal operation. Similarly, device volume
waming pmvides warning that a padcular device's safety
volume, or a group of devices' safety volumes. may be vio-
lated. If a device's safety volume is violated, the device murt
take immediate actions to avoid a collision

Define coilision detection (CD) tasks as those tasks as-
signed to track obstacles and determine whether any safety
volumes will be violated. These tasks must estimate the ear-
liest violation of any device's or workcell's safety volume
in terms of some parameter. In addition, since there may
be many obstacles p m n t in the environment. the CD tasks
must determine, for each message received h m the sensors.
whether a current obstacle is one which it is already tracking,
whether the current obstacle presents a threat to any of the
devices or workcells the CD task is monitoring. or whether
the obstade is a new heat.

409

We define device stopping (DS) tasks as those tasks which
determine how a device (or group of devices) can safely stop
and how long (in terms of some parameter) the device (or
group of devices) require to stop. For example, if two robots
are canying a heavy panel it may not be safe to have each
robot just stop as quickly as they can (individually). This
uncoordinated action may cause them to drop the panel or
even damage themselves. Instead, we may want them to stop
as fast as possible while not deviating from their preplanneed
path (to avoid any further collisions).

An important issue is how many CD and DS tasks should
there be, and what their relationships should be with the other
tasks. One option would be for each workcell to have its own
CD task, and if an obstacle comes within a prescribed min-
imum distance, the CD task would spawn subtasks for the
individual devices within the workcell. However,’ the over-
head associated with setting up new tasks may be prohibitive.
Also, we may not know that there is enough computing power
available to run each of these tasks in real-time. A better idea
might be for these tasks to be preassigned to processors but
remain “inactive” until required. As more processing by the
CD tasks is required, the other tasks would be forced to slow
down. Since we would probably want the devices to slow as
an obstacle came near, this may not be much of a problem if
the CD tasks and the device controlling tasks were assigned
to the same processor?

Another issue here is in dynamic priority assignments. As
an obstacle comes near, we may want the CD tasks to have
the highest priority. When a collision becomes imminent we
want the task controlling the stoppage of a device to have the
highest priority (and not be interruptible).

6 Summary
We are currently investigating various issues of system inte-
gration, the solutions of which will extend the framework of
an M R S to meet its real-time performance and fault-tolerance
goals. While many of the issues presented are currently being
studied in the literature, few solutions deal with the special
requirements of the IMRS. The use of a communication co-
processor to speed up communications, provide real-time t&
scheduling, and maintain tables and lists for fault-tolerance
has been discussed. Issues related to the task didbution
in an IMRS have been addressed. The use of work cou-
pled tas~s to recover fiom failed tasks, as well as the use of
-bat messages to determine failed processors has
examined. he ~01utions of these problems will benefit not
only mms, but also other distributed real-time systems.

6Thrr may be a problem if, for example, robots welc fdlowing a
prescxibed trajectory. In this case, we may not be able to follow the
trajectory without sufficient computathd power. We may be able to
follow the same path. though.

References
[l] Maimon, 0. Z., and Nof, S. Y., “Coordination of robots

sharing assembly tasks”, Journal of Dynamic Systems,
Measurement, and Control, Vol. 107, December 1985.

[2] Maimon, 0. Z., “A multi-robot control experimental
system with random parts arrival”, IEEE Conference on
Robotics and Automation, St. Louis, MO, March 1985.

[3] Simpson, J. A., Hocken, R. J., and Albus, J. S., “The
automated manufacturing research facility of the Na-
tional Bureau of Standards”Journa1 of Manufacturing
Systems, Vol. 1, No. 1, 1984, pp. 17-31.

[4] Jones, A. T., and McLean, C. R., “A proposed hierar-
chical control model for automated manufacturing sys-
tems”, Journal of Manufacturing Systems. Vol. 5 , No. 1,
p ~ . 15-25.

[5] Haynes, L. S., Barbera, A. J., Albus, J. S.. Fitzgerald,
M. L., and McCain, H. G., “An application example of
the NBS robot control system”, Robotics and Computer-
Integrated Manufacturing, Vol. 1, No. 1, 1984, pp. 81-
95.

[6] Shin, K. G., Epstein, M. E., and Volz, R. A., “A mod-
ule architecture for an integrated multi-robot system”,
Technical Report, RSD-TR-10-84, Robot Systems Di-
vision, Center for Research and Integrated Manufactur-
ing (CRIM), The University of Michigan, Ann Arbor,
MI, July 1984. Also appeared in the Proc. 18th Hawaii
Int’l Conf. on System Sciences, January 1985, pp. 120-
129.

[q Shin, K. G., and Epstein, M. E., “Intertask communi-
cations in an integrated multi-robot system”, Technical
Report, RSWTR4-85, Robot Systems Division, Cen-
ter for Research and Integrated Manufacturing (CFUM),
The University of Michigan, Ann Arbor, MI, May 1985.
Also appeared in IEEE Journal on Robotics and Autom-
tion, Vol. RA-3, No. 2, April 1987, pp. 90-100.

Specification (Draft), February 25, 1986.
[8] Manufacturing Automation Protocol (MAP) Reference

[9] IEEE Standards Board. IEEE Standards for Local Area
Token-Passing Bus Access Method and Networks:

Physical Layer Specification. New Yoh: IEEE. 1985.

[lo] Stallings, W., “IEEE Project 802 : Setting standards for

[l 11 “Manufacturing Message Specification - Part 1: Service
Specification”, I S 0 2nd DP 9506, May 21, 1987.

[12] “Manufacturing Message Specification - Part 2: Proto-

local-area networks”, ComputerWorld, February 1984.

col Specification”, I S 0 2nd DP 9506, May 21. 1987.

410

[13] Ramachandran, U.. “Hardware support for interprocess
communication”, Computer Sciences Technical Report #
667, University of Wisconsin, Madison, WI., September
1986.

[14] Muralidhar, K. H., “Performance management - mea-
sures, analysis, control, and optimization”, Proc. 11-th
Conference on Local Computer Networks, October 1986,

[15] Chu, W. W., Holloway, L. J., Lan, M. T., and Efe, K..
‘Task allocation in distributed data processing”, Com-
puter. November 1980, pp. 57-69.

pp. 20-25.

[161 Efe, K., “Heuristic models of task assignment schedul-
ing in distributed systems”, Computer, June 1982. pp.
50-56.

[17] Ma, P. Y. R., Lee, E. Y. S., and Tsuchiya, M., “A task
allocation model for distributed computing systems”,
IEEE 7jansactions on Computers, Vol. C-31, No. 1, Jan-
uary 1982, pp. 41-47. ’

I181 Chu, W. W., and Lan, L. M. T., “Task allocation and
precedence relations for distributed real-time systems”,
IEEE 7jansactions on Computers, Vol. (2-36, No. 6, June
1987, pp. 667-679.

[19] Lo, V. M., “Heuristic algorithm for task assignment in
distributed systems”, Proc. 4-th International Confer-
ence on Distributed Computing Systems, May 1984, pp.
30-39.

[20] Knight, J. C., and Urquhart, I. I. A., “On the imple-
mentation and use of Ada on fault-tolerant distributed
systems”, IEEE Transacnons on Software Engineering,
Vol. SE-13, No. 5, May 1987, pp. 553-563.

[21] B h a n , K. P., Joseph, T. A., Raeuchle, T., and Ab-
badi, A. E., “Implementing Fault-Tolerant Distributed
Objects”. IEEE nansactions on Sofrware Engineering,
Vol. SE-11, No. 6, June 1985, pp. 502-508.

[22] Kramer, J. and Magee, J., “Dynamic Configuration for
Distributed Systems”, IEEE 7jansactions on Software
Engineering, Vol. SE-11, No. 4, April 1985. pp. 424-
435.

41 1

